On a quasi-bound state in the K⁻d system caused by strong interactions

N.V. Shevchenko

2023/6/22 木村 佑斗

1. Intro

- ンシャルの場合からどのように変化するのかを調べている。
- 3体FaddevタイプAGS方程式を解いた。
- ・3つの*KN*相互作用モデルを使った。 chirally motivated model)

. この論文では新たなNN相互作用のポテンシャルを考え、それが $K^-pp \ge K^-d$ に 与える影響を調べ、quasi-bound stateが存在するのか、また今までのポテ

(2個の現象論的なポテンシャルと1個の As a input

p.1 para-1

1. Intro • AGS方程式 $U_{ij} = G_0^{-1}(1 - \delta_{ij}) + \sum t_k G_0 U_{kj}$ *k*≠*i* U_{ii} :遷移行列、 G_0 :自由な場合のグリーン関数、 t_{ii} :t行列 . 散乱振幅T_{ii}は、

 $T_{ij} = \langle \phi_i | U_{ij} | \phi_j \rangle$

で求まる。T_{ii}の極を見つければそれに対応した束縛エネルギーと共鳴の幅が決まる。

1 intro

- $\bar{K}NN$ system with spin one (which is denoted as K^-d)
- これはatomic stateを持つ(kanic deuterium、K中間子重水素) クーロン力でくっついている。強い相互作用は束縛エ ネルギーと崩壊幅に補正を加える。
- ・Quasi-bound state に対応する極は見つけられなかった。
- ・ただし、 $\bar{K}N \pi\Sigma$ の中のI = 0の引力ポテンシャルを手で大きくすると、 K^-pp に 現れるようなQuasi-bound stateが出現した。

- ・ 積分方程式である解くべきAGS Eqsを2通りで解いた。
- (1):極の位置を直接探す。
- . (2): $1/|Det|^2$ method (これは K^-pp でうまくいった方法)
- この2つは相補的。

(1)は固有値問題を解くための初期値が必要だが、それは(2)から得られる。(2)において実エネ ルギー軸のコブのFittingで得られる束縛エネルギーと共鳴の幅は(1)の結果の制御に使われる。

P.2 para-1,2

- 3.
- 用ではなく、その寄与が小さいから)。

・AGS方程式のinputはT行列。 $\overline{KN} - \pi\Sigma, NN, \Sigma N, \pi N$ のポテンシャルに対応。

これらのポテンシャルはすべてのLow-Energy Expのデータを正確に再現す

 ただでさえ実験データには不確定性があるのに、あえて3体力を入れてさらに 不確実にすることはしない。 $p \ge K^-$ の間のクーロン力も入れない(なぜなら atomic stateに比べてQuasi-bound stateではクーロン力はメインの相互作

- . $\bar{K}N$ は $\Lambda(1405)$ を通して $\pi\Sigma$ とカップルしている。この共鳴状態は1個か2個の極 で形成されている(one-pole, two-pole)。
- $V_{\bar{K}N}^{\Gamma,SIDD}$, $V_{\bar{K}N}^{2,SIDD}$: それぞれ $\bar{K}N \pi\Sigma$ のone-poleとtwo-poleの場合の現象論的な ポテンシャル。
- . $V_{\bar{K}N}^{Chiral}$: カイラル有効理論の $\bar{K}N \pi\Sigma \pi\Lambda$ のポテンシャル (エネルギーに依存) (with two-pole $\Lambda(1405)$ structure)

- を再現できた。
- できた。

$$\gamma = \frac{K^- p \to \Sigma^- \pi^+}{K^- p \to \Sigma^+ \pi^-}$$

 $R_c = \frac{K^- p \rightarrow \text{charged particles}}{K^- p \rightarrow \text{all final states}}$

$$R_n = ?$$

・3つのポテンシャルはK中間子水素の1s level shiftと崩壊幅を再現した。他の 論文等とは異なって、デーザーの近似式を使わずに、直接それらの実験データ

. さらに、 K^-p の弾性・非弾性散乱の断面積やbranching ratios γ, R_c, R_n も再現

interaction

with form-factors

$$g_m(k) = \sum_{k=1}^{n}$$

k,k':相対運動量

The Two-term Separable New potential (TSN) of nucleon-nucleon

 $V_{NN}^{TSN}(k,k') = \sum^{2} g_{m}(k)\lambda_{m}g_{m}(k'),$ m=1

p.3 para-1

Table 1 Parameters of the new V_{NN}^{TSN} potential, triplet: strength constants λ_m , range β_{mn} and additional γ_{mn} parameters.

. 1	•	λ_m	β_{m1}	β_{m2}	β_{m3}	γ_{m1}	γ_{m2}	γ_{m3}
m = m = m	= 1 = 2	-1.9938 1.7584	$1.2096 \\ 3.9940$	$3.2135 \\ 3.9999$	$1.3912 \\ 2.7070$	0.0884 - 1.9660	$1.9889 \\ -1.9225$	-0.1027 0.4144

Table 2 Parameters of the new V_{NN}^{TSN} potential, singlet: strength constants λ_m , range $\beta_m n$ and additional

	λ_m	β_{m1}	β_{m2}	β_{m3}	γ_{m1}	Ym2	Vm3
m = 1 $m = 2$	-1.9793 1.7815	$1.8855 \\ 3.9897$	$2.8396 \\ 3.9919$	$1.1834 \\ 0.5000$	$-0.1800 \\ -1.8881$	$1.9999 \\ -1.9914$	0.0362

3. New separable NN potential ・TNSポテンシャルでの散乱長と有効長

- $a_{np} = -5.400 \text{fm}, \quad r_{np} = 1.744 \text{fm}$
- $a_{pp} = 16.325 \text{fm}, \quad r_{pp} = 2.792 \text{fm}$
- ・TSAポテンシャルでの散乱長と有効長
 - $a_{np} = -5.413$ fm, $r_{np} = 1.760$ fm
 - $a_{pp} = 16.559 \text{fm}, \quad r_{pp} = 2.880 \text{fm}$
- ・重水素の束縛エネルギーの計算結果はどちらも 2.2246MeV

・位相シフト

Fig. 1 Phase shifts of np and pp scattering calculated using the new V_{NN}^{TSN} and previously used $V_{NN}^{\text{TSA-B}}$ potentials (lines) compared with phase shifts of Argonne V18 potential (circles).

p.4

いをしている。

・散乱長・有効長、束縛エネルギー、位相シフトを見る限り、TSNポテンシャ ルは実験データをよく再現しているし、TSAポテンシャルとも同様の振る舞

・ ・ 直接poleを探した方の結果

	Coupled calcu	-channels Ilation	With exact optical $\bar{K}N$ potential		
	B_{K^-d}	Γ_{K^-d}	B_{K^-d}	Γ_{K^-d}	
$V_{\bar{K}N}^{1,\mathrm{SIDD}}$			0.8	68.3	
$V_{ar{K}N}^{2,\mathrm{SIDD}}$	0.9	59.4	3.8	63.2	
$V_{ar{K}N}^{ m Chiral}$	1.3	41.8	0.9	43.6	

V_{NN}^{TSN} を取り入れて計算

Table 3 Binding energy B_{K-d} (MeV) and width Γ_{K-d} (MeV) of the quasi-bound state in the K^{-d} system calculated using direct pole search in the complex energy plane. The results obtained by coupled-channel $\bar{K}NN - \pi \Sigma N$ equations solving and one-channel $\bar{K}NN$ variant with exact optical antikaon-nucleon potentials are presented. Phenomenological $\bar{K}N$ potentials with one-pole $V_{\bar{K}N}^{1,\text{SIDD}}$ and two-pole $\Lambda(1405)$ structure $V_{\bar{K}N}^{2,\text{SIDD}}$ were used together with the chirally-motivated model $V_{\bar{K}N}^{\text{Chiral}}$ of the antikaon-nucleon interaction. The binding energy is counted from the threshold energy of the K^-d system: $z_{th,K-d} = m_{\bar{K}} + 2m_N + E_{deu} = 2371.26$ MeV.

state探索の計算結果に影響を与える。

提案されたV^{TSN}はpoleを低エネルギー側に移動させるように働いた —>Quasi-boundの出現

. 同様の方法で V_{NN}^{TSA} を入れて計算したときは、Quasi-boud stateは1個も現れ なかった。—>*K*N相互作用だけでなくNN相互作用もK⁻dのQuasi-bound

. V_{NN}^{TSA} 使用時のpoleの位置は K^-d のthresholdにとても近かったが、この論文で

だから。

・ところで、atomic stateのK中間子重水素とK-d Quasi-bound stateはどち らもスピン1の*RNN*状態だが、見間違えることはあり得ない。束縛エネルギー がそれぞれ~10keV、1~2MeVで、共鳴の幅がそれぞれ~1keVと数十MeV

p.6 para-1

4. Results & discussion . $K^{-}pp$ ではうまくいった1/|Det|^2法は $K^{-}d$ ではclearな結果は得られなかった。

FIG. 1. (Color online) Function $1/|\text{Det}(z)|^2$ calculated with the one-pole $V_{\bar{K}N-\pi\Sigma}^{1,\text{SIDD}}$ (black triangles), two-pole $V_{\bar{K}N-\pi\Sigma}^{2,\text{SIDD}}$ (blue [gray] circles) phenomenological potentials, and the chirally motivated $V_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{\text{Chiral}}$ potential (red [gray] squares). Breit-Wigner fits for all three functions are plotted by the lines of the corresponding color.

Fig. 2 Evaluated $1/|\text{Det}(z)|^2$ functions for the K^-d system calculated using chirally-motivated V_{KN}^{Chiral} (squares), one-pole phenomenological $V_{\bar{K}N}^{1,\text{SIDD}}$ (circles) and two-pole phenomenological $V_{\bar{K}N}^{2,\text{SIDD}}$ (triangles) antikaon-nucleon potentials. The lines are the corresponding non-linear fits of the functions.

bound stateを調べるには適切ではない。

 $B_{K^-d,BW}^{1,\text{SIDD}} = 9.2 \text{ MeV},$ $B_{K^-d,BW}^{2,\text{SIDD}} = 11.4 \text{ MeV}, \quad \Gamma_{K^-d,BW}^{2,\text{SIDD}} = 52.2 \text{ MeV}, \\ B_{K^-d,BW}^{\text{Chiral}} = 5.3 \text{ MeV}, \quad \Gamma_{K^-d,BW}^{\text{Chiral}} = 48.6 \text{ MeV}.$

特に、束縛エネルギーが直接pole探査法の結果とズレている。

・1/|Det|^2法はthresholdに近い(つまり束縛エネルギーが小さい)Quasi-

 $\Gamma^{1,\mathrm{SIDD}}_{K^-d,BW} = 59.6 \quad \mathrm{MeV},$

p.6 para-2

4. Results & discussion . 新しい V_{NN}^{TSN} ポテンシャルを $K^{-}pp$ に適用するとどう変化するか?元々 $K^{-}pp$ の Quasi-bound stateはthresholdから離れていたのであまり変化は見られなかっ

た。

 $z_{th,K^-pp} = m_{\bar{K}} + 2 m_N = 2373.485 \text{ MeV}.$

	Coupled channels calculation		With exact optical $\bar{K}N$ potential		Previous results from [7]	
	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	Γ_{K^-pp}	B_{K^-pp}	\varGamma_{K^-pp}
$V_{\bar{K}N}^{1,\mathrm{SIDD}}$	52.18	67.1	53.29	63.3	53.29	64.9
$V_{\bar{K}N}^{2,{ m SIDD}}$	46.56	51.2	46.65	47.4	47.45	49.8
$V_{ar{K}N}^{ m Chiral}$	29.43	46.4	30.01	46.6	32.24	48.6

Table 4 Binding energy B_{K^-pp} (MeV) and width Γ_{K^-pp} (MeV) of the quasi-bound state in the K^-pp system calculated using direct pole search in the complex energy plane. The results obtained by coupled-channel $\bar{K}NN - \pi \Sigma N$ equations solving and one-channel $\bar{K}NN$ variant with exact optical antikaon-nucleon potentials are presented. Phenomenological $\bar{K}N$ potentials with one-pole $V_{\bar{K}N}^{1,\text{SIDD}}$ and two-pole $\Lambda(1405)$ structure $V_{\bar{K}N}^{2,\text{SIDD}}$ were used together with the chirally-motivated model $V_{\bar{K}N}^{\text{Chiral}}$ of the antikaon-nucleon interaction. Previous results from [7] are also shown. The binding energy is counted from the threshold energy of the K^-pp system:

5. Summary

- . NN相互作用は K^-pp, K^-d 両方のquasi-bound stateに影響を与えた。
- ・特に K^-d のQuasi~bound stateの調査ではNN相互作用がよく効いた。
- . $K^{-}pp, K^{-}d$ のquasi-boundの束縛エネルギーは大きく異なる(~50MeVと~ 3MeV)が、共鳴の幅は同等(40~60MeV)だった。

