Interim Report of my Master Thesis 修論中間報告

木村佑斗 (Yuto Kimura), M2 RARIS三神峯 雜誌会 2024/11/7

Outline

1. Anti-Kaonic Nuclei

2. "J-PARC E15 experiment"

3. "J-PARC E80 experiment"

4. Cylindrical Drift Chamber (CDC)

5. Gas Study for CDC

6. Summary

My Theme of D

• Search for anti-kaonic nuclei "*K*⁻*ppn*"

My Theme of M

- To decide on the gas to be used for the CDC
- To operate the CDC
- To acquire the first data, and confirm that the performance satisfies our expectations

Meson in nuclei

Meson: quark-antiquark ($\bar{q}q$) pair

- In nuclei, mesons are virtual particles and form nuclear potential (Yukawa theorem).
- In vacuum, mesons are real particles having own intrinsic masses (cf. meson beam).

Can meson be a constituent particle forming nuclei? If yes, how do meson and core nucleus change?

K⁻p+→k¯⁰n

LAB. MOMENTUM (MeV/c)

K[−]p + Λπ⁰

- Strong attraction in I = 0 from scattering and X-ray experiments.
- $\Lambda(1405) = KN$ molecule picture is now widely accepted.

KEK-PS

E228

DEAR

-200

-100

Shift *ɛ_{1s}* [eV]

K^{bar}N molecule from Lattice QCD PRL114(2015)132002. 0.8Ā ΚN 0. $|\langle state|E\rangle|^{2}$ 0.2 πΣ 156 296 411 570

 m_{π} (MeV)

K

Why not anti-kaonic nucleus with additional nucleons?

Anti-Kaonic Nuclei

Kaon mass changes?

New materials composed of real bosons ---> Unknown properties emerge?

KN attraction & *NN* repulsion —> Molecule-like structure? Confirmed by J-PARC E15 exp. Anti-kaonic nucleus could be a new & unique probe for low-energy QCD. —> We plan to do the systematic research on anti-kaonic nucleus.

A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, Phys. Lett. B 590 (2004) 51

Compact system? —> Nucleon overlaps? Dense matter?

n

J-PARC E80 exp.

- " $\bar{K}NNN$ " should exist.
- Predicted binding energies and widths are widely spread depending on $\bar{K}N$ interaction models.
- We will measure all the decay particles from " K^-ppn ".
- If it exists, we can obtain information about its binding energy and decay width.

Detecting more decay particles including a neutron than E15 is needed. The new detector system for E80 is being developed now.

New Cylindrical Detector System (CDS)

Under construction

Two advantages of the new CDS compared to the E15-CDS

- 1.6 times larger solid angle (59% 20%)
- 4 times higher neutron detection efficiency (3cm —> 12cm)

Superconducting coil

2024/9/19, JPS meeting (Hokkaido univ.) 2024/10/15, J-PARC symposium (poster)

Cylindrical Neutron Counter

2023/12/11, SNP school (J-PARC) 2024/3/8, ELPH symposium (online, poster) 2024/3/19, JPS meeting (online)

• Designed by F. Sakuma (RIKEN)

Exp.	cell	wire	Num of channel	area (Beam軸垂直)	area (Beam軸方向)
J-PARC E15	六角形 15層	Au-W(Au-Al) ø30 um(100 um)	1,816 (6,428)	ø(1060 - 300) mm	850 mm
J-PARC E80	六角形 15層	Au-W((Be-Cu) ø30 um(80 um)	1,816 (6,428)	ø(1060 - 300) mm	2580 mm

- Designed by F. Sakuma (RIKEN)
- Wire stringing work by workers of Hayashi Repic corp. (Dec. 2023 ~ Jun. 2024)

- Designed by F. Sakuma (RIKEN)
- Wire stringing work by workers of Hayashi Repic corp. (Dec. 2023 ~ Jun. 2024)
- Making daisy chains to supply HV to wires by Y. Kimura (me) (Jul. 2024 ~ Aug. 2024)

pic corp. (Dec. 2023 ~ Jun. 2024) <mark>Y. Kimura (me)</mark> (Jul. 2024 ~ Aug. 2024)

- Designed by F. Sakuma (RIKEN)
- Wire stringing work by workers of Hayashi Repic corp. (Dec. 2023 ~ Jun. 2024)
- Making daisy chains to supply HV to wires by Y. Kimura (me) (Jul. 2024 ~ Aug. 2024)
- Preparing for wire aging by Y. Kimura (me) with F. Sakuma (Sep. 2024 ~ Oct. 2024)

HV side

Read-out side

We thought that finally it's time to apply HV! But, it didn't work well... We spent a week to find two broken wires.

pic corp. (Dec. 2023 ~ Jun. 2024) Y. Kimura (me) (Jul. 2024 ~ Aug. 2024) <mark>th F. Sakuma (Sep. 2024 ~ Oct. 2024)</mark>

HV side'

Read-out side'

- Designed by F. Sakuma (RIKEN)
- Wire stringing work by workers of Hayashi Repic corp. (Dec. 2023 ~ Jun. 2024)
- Making daisy chains to supply HV to wires by Y. Kimura (me) (Jul. 2024 ~ Aug. 2024)
- Preparing for wire aging by Y. Kimura (me) with F. Sakuma (Sep. 2024 ~ Oct. 2024)
- Wire aging by Y. Kimura (me) (Oct. 2024 ~)

pic corp. (Dec. 2023 ~ Jun. 2024) Y. Kimura (me) (Jul. 2024 ~ Aug. 2024) th F. Sakuma (Sep. 2024 ~ Oct. 2024)

- Designed by F. Sakuma (RIKEN)
- Wire stringing work by workers of Hayashi Repic corp. (Dec. 2023 ~ Jun. 2024)
- Making daisy chains to supply HV to wires by Y.Kimura (me) (Jul. 2024 ~ Aug. 2024)
- Preparing for wire aging by Y. Kimura (me) with F. Sakuma (Sep. 2024 ~ Oct. 2024)
- Wire aging by Y. Kimura (me) (Oct. 2024 ~)

Things to do for my master thesis (~ Dec 26, 2024)

- Check the analog signals
- Reduction of noises
- Cosmic ray test

ガスについて

Exp.	cell	wire	Num of channel	area (Beam軸垂直)	area (Beam軸方向)	Gas mixture
J-PARC E15	六角形 15層	Au-W(Au-Al) ø30 um(100 um)	1,816 (6,428)	ø(1060 - 300) mm	850 mm	Ar(50%) C2H6(50%)
J-PARC E80	六角形 15層	Au-W((Be-Cu) ø30 um(80 um)	1,816 (6,428)	ø (1060 - 300) mm	2580 mm	?

- We want to decide the gas mixture.
- 3 times the volume of the E15-CDC
- Non-flammable and low-cost gases are expected.

Ar-CO, is a good candidate.

studied the characteristics of Ar-CO 2 using simulation tool, Garfield++ and cosmic ray.

ガスについて: Simulation

Electric Field and Avalanche

E [V/cm] 10⁵ ۲ ۲ 10⁴ -500 0.5 10³ -1000 0-0 ۲ 10² -1500 Drift area -0.5 7*10^2~10^4 -2000 10 ۲ ۲ 19.5 20.5 21 20 1官 x [cm] 10

1 cell

Electric Field

Avalanche

21

21.5

20.5

20

19.5

ガスについて: Simulation

Comparison of various Ar-CO₂ mix ratios

Drift Velocity

Drift areaでフラットに なっててほしい。

Diffusion

Drift areaでLongitudinal (進行方向)が小さいと良い。

Better ?

	-		-								
								-			
								-			
								•			
					F						
			-					•			
/	'	/	1	(r	1	1		

ガスについて: Simulation

Comparison between Ar-CO₂ (90-10) and Ar-C₂H₄ (50-50)

Drift Velocity

Diffusion

Amplification

The Ar-CO₂ (90-10) mixture should provide sufficient performance.

*

ガスについて:宇宙線テスト

Comparison between Ar-CO₂ (90-10) and Ar-C₂H₄ (50-50)

Focused on Tracking Efficiency and Residual (position resolution)

Experiment

- The study used the E15-CDC (old CDC)
- No magnetic field
- Ar-C₂H₆ (50-50) : 2750 V
- Ar-CO₂ (90-10) : -2250 ~ -2400 V
- Pre-amplifiers with ASDs (SONY CXA3653)
- HUL (multi-hit TDCs)

Q,
$$\tau$$
 =16ns)

ガスについて:宇宙線テスト

Comparison between Ar-CO2 (90-10) and Ar-C2H4 (50-50)

Shapes of the TDC and XT curve

The differences between the types of gases were clearly visible.

Distance from hit point to wire [cm]

ガスについて: 宇宙線テスト

Comparison between Ar-CO₂ (90-10) and Ar-C₂H₄ (50-50)

HV scan of tracking efficiency

2 Track Events $Eff_{track} := CDH 2Hit Events$

Tracking Efficiency vs HV

Approximately <u>2350 V</u> corresponds to the expected Efficiency (~ 97 %).

ガスについて:宇宙線テスト

Comparison between Ar-CO₂ (90-10) and Ar-C₂H₄ (50-50)

HV scan of the Residual

Residual := Hit distance – Track distance (from wire)

The residual (related to resolution) approaches an adequate level at 2400 V.

Things to do for my master thesis

To acquire the data of HV scan with Ar-C₂H₆ (50-50)

To check the analog signal using "test chamber"

Summary

- I study about the Cylindrical Drift Chamber which will be used ightarrowfor the anti-kaonic nuclei " K^-ppn " search, J-PARC E80 exp.
- About the new CDC,
 - I've finished assembling for applying HV and read out the signal.
 - ightarrow
- About gases for the CDC, ightarrow

 - I'll improve the precision of the way of $X \longrightarrow T$ conversion.
 - I'll check the analog signal using "test chamber" filling Ar-CO2 (90-10). ightarrow
 - I'll acquire the HV scan data using E15-CDC(old CDC) filling Ar-C2H6 (50-50) to compare to Ar-CO₂ (90-10) in more detail.

I'll conduct the aging, checking the analog signal, noise reduction and first cosmic ray test.

I've finished the simulation to choose the ratio of Ar-CO₂ and cosmic ray test filling Ar-CO₂ (90-10).

Thank you, that's all.

Back-up

Super-		Wire	Radius	Cell width	Cell width	Stereo angle	Signal channe	
layer	layer	direction	(mm)	(degree)	(mm)	(degree)	per layer	
	1	X	190.5		16.7	0		
A1	2	X'	204.0	5.00	17.8	0	72	
	3	X	217.5		19.0	0		
U1	4	U	248.5	4.00	17.3	-2.27	00	
	5	U'	262.0	4.00	18.3	-2.39	90	
V1	6	V	293.0	3 60	18.4	2.42	100	
	7	V'	306.5	5.00	19.3	2.53	100	
A2	8	X	337.5	3.00	17.7	0	190	
	9	X'	351.0	3.00	18.4	0	120	
U2	10	U	382.0	2 40	16.0	-2.82	150	
	11	U'	395.5	2.40	16.6	-2.92	100	
V2	12	V	426.5	2.25	16.7	2.96	160	
	13	V'	440.0	2.20	17.3	3.05	100	
A3	14	X	471.0	2.00	16.4	0	190	
	15	X'	484.5	2.00	16.9	0	100	

Table 12: Cell configuration of the CDC.

J-PARC E15 exp.

- "K⁻pp" search
- Prior study on J-PARC E80 exp.
- First exclusive experiment and analysis for " K^-pp " in the world

(*1) Binding Energy $\sim 50 \text{ MeV}$

Decay Width ~ 100 MeV

—> Deep Bound Sate

Larger Width than $\Lambda(1405)$

--> (*2) Further Analysis by T. Yamaga (Mesonic decay channel

 \rightarrow Inside of " K^-pp ")

—> Further Experiment, J-PARC P89 (Isospin partner, Spin structure)

*1) T.Yamaga, et al., Phys Rev C 102, 044002 (2020) *2) T.Yamaga, et al., Phys Rev C110, 014002 (2024)

Avalanche

2400 V

25